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We construct a deformed Cλ-extended Heisenberg algebra in two-dimensional space
using noncommuting coordinates which close an algebra depends on statistical param-
eter characterizing exotic particles. The obtained symmetry is nothing but an exotic
particles algebra interpolating between bosonic and deformed fermionic algebras.
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1. INTRODUCTION

The recent upsurge of interest in the physics in noncommutative spaces has
been spurred due to its very clear and cogent appearance in the context of string
theories, D-branes and M-theories. In quantum field theory, this is motivated by
studies of the low energy effective theory of D-brane with a nonzero NS-NS B
field background (Connes et al., 1998; Douglas and Hull, 1998; Ardalan et al.,
1999; Chu and Ho, 1999, 2000; Schomerus, 1999; Seiberg and Witten, 1999). On
other hand, the study at the level of quantum mechanics in noncommutative spaces
is also meaningful for clarifying some possible phenomenological consequences
in solvable models. In this latter context, the present paper is basically devoted to
deal with exotic particles living in two-dimensional space, such that a consistent
ansatz of commutation relations of phase-space variables should simultaneously
include space-space noncommutativity and momentum-momentum noncommu-
tativity. Then, we obtain a new type of commutation relations at the deformed
level defining the exotic particles algebra and we show that the obtained symme-
try is nothing but a deformed Cλ-extended Heisenberg algebra which is kind of
deformed oscillator algebra. As known in the literature, the subject of oscillator
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algebras has been a topic of intensive research activities during the past decade
and much attention has been paid to this field in connection with the important role
investigated in many physical systems, such as the description of the fractional
statistics (Leinaas and Myrheim, 1977; Wilczek, 1982a,b, 1990; Goldin et al.,
1985; Greenberg, 1990, 1991; Chaturvedi and Srinivasan, 1991; Lerda, 1992;
Majid, 1992; Goldin and Majid, (2004) Horváthy and Plyushchay, 2002; Daoud
and Douari, 2003). Among these various deformations and extensions, we men-
tion the generalized deformed oscillator algebras (GDOA’s) (Macfarlane, 1982;
Junussis, 1982; Biedenhrn, 1989; Macfarlane, 1982; Junussis, 1982; Quesne and
Vansteenkiste, 1995, 1996) and the G-extended oscillator algebras (Quesne and
Vansteenkiste, 1998) where G is some finite group, e.g., in the case of Calogero
model Cλ = Zλ is the cyclic group of order λ.

The goal of the present letter is mainly to obtain an algebra describing the
planar system (exotic particles), which is different from that given by Lerda and
Sciuto (1993). The study is based on the noncommutative geometry defined by a
fundamental algebra depending on the statistical parameter ν which characterizes
exotic particles. In Section 2, we give a short review on these latter particles. Then
we recall some facts concerning the Cλ-extended oscillator algebras which were
introduced as a generalization of Calogero–Vasiliev algebras (Biedenhrn, 1989;
Macfarlane, 1982; Junussis, 1982; Vasiliev, 1991; Polychronakos, 1992; Brink
et al., 1992; Brzezński et al., 1993; Quesne and Vansteenkiste, 1995, 1996, 1998,
1999; Quesne, 2000, 2001) in Section 3. In Section 4, we consider a noncom-
muting spatial and momentum coordinates satisfying an algebra depending on
the statistical parameters to define an annihilation and creation operators which
generate an exotic particles algebra. Owing to the latter algebra, we also show that
the obtained symmetry is interpolating between bosonic and deformed fermionic
one for arbitrary operator ξ , which is introduced to define the generators. Another
important result is that the algebra describing the planar system is a deformed
Cλ-extended Heisenberg algebra.

2. ANYONS

These particles are known as quasi-particles or excitations (Laughlin,
1983a,b; Störmer et al., 1999) in two-dimensional space obey intermediate statis-
tics that interpolate between bosonic and fermionic statistics because of its multiply
connected configuration space (Leinaas and Myrheim, 1977). Among the theories
describing anyons there is Chern–Simons theory (Wilczek, 1982a,b, 1990; Goldin
et al., 1985) and generalized Maxwell theory (Stern, 1991). In the first theory, the
standard way to obtain anyons is to add to the action S a topological, or Hopf,
term

S −→ S + iνStop. (1)
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The simplest case, to describe free anyons, corresponds to S being free charged
bosons or fermions with U(1) current Jµ and charges Q = ±1. Here Stop is the
Chern–Simons term where the U (1) gauge field Aµ is manufactured from the U(1)
matter current Jµ = εµνα∂νAα . The statistical parameter ν is normalized so that
the spin of the particle is ν

2π
. The second theory is a novel way to describe anyons

without a Chern–Simons term. Thus, a generalized connection was considered in
(2 + 1)-dimensions denoted Aθ

µ, µ = 0, 1, 2. The gauge theory is defined by the
following Lagrangian

Lθ = −1

2
FµνF

µν + JµAθ
µ (2)

with Aθ
µ ≡ Aµ + θ

2 εµνρF
νρ is the generalized connection and θ is real parameter

in Minkowski space. The Lagrangian Lθ desribes Maxwell theory that couples to
the current via the generalized connection rather than the usual connection. In this
model, the gauge field is dynamic and the potential has confining nature, which
make the theory different from the first one.

On other hand, at the level of quantum mechanics in noncommutative spaces,
the noncommutative geometry and anyons are related as was shown in Bigatti
and Susskind (xxxx) Myung and Lee (xxxx). The noncommutativity comes from
the presence of the magnetic field. In this sense, it is valuable to study a field
theory both in the presence of a magnetic field and in the coordinate space. In this
context, the present work is devoted to find out the symmetry describing anyons
basing on noncommutative geometry. We found it very interesting by considering
the algebra closed by the coordinates depends on statistical parameter as we will
see in the next section. The obtained algebra is interpolating between bosonic and
deformed fermionic algebras depending on statistical parameter.

After this short review on planar system, we give in what follows its associated
symmetry having two extremes: bosonic and deformed fermionic symmetries.

3. PLANAR SYSTEM SYMMETRY

First, we briefly recall the noncommutative geometry. Its most simple ex-
ample consists of the geometric space described by noncommutative Hermitian
operator coordinates xi , and by considering the noncommutative momentum op-
erators pi = i∂xi

(∂xi
the corresponding derivative of xi). These operators satisfy

the following algebra

[xi, xj ] = iθεij , [pi, pj ] = iθ−1εij , [pi, xj ] = −iδij

[pi, t] = 0 = [xi, t], [pi, ∂t ] = 0 = [xi, ∂t ], (3)

with t the physical time and ∂t its corresponding derivative.
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By considering two-dimensional harmonic oscillator which can be decom-
posed into one-dimensional oscillators. So, it is known that the algebra (2) allows
to define, for each dimension, the representation of annihilation and creation op-
erators as follows

ai =
√

µω

2

(
xi + i

µω
pi

)

a
†
i =

√
µω

2

(
xi − i

µω
pi

)
. (4)

with µ is the mass and ω the frequency. These operators satisfy

[ai, a
†
i ] = 1,

defining the Heisenberg algebra. In the simultanuously noncommutative phase-
space and noncommutative momentum-momentum, the bosonic statistics should
be maintained; i.e., the operators a

†
i and a

†
j are commuting for i �= j . Thus, the

deformation parameter θ is required to satisfy the condition

θ = −
(

1

µω

)2

θ−1.

To find out an algebra describing the planar system, we start by introducing
the noncommutative geometry depending on the statistical parameter ν ∈ R. We
study two cases with the main difference is based on the deformation of the
commutative relation

[pi, xj ] = −iδij . (5)

3.1. Case 1

In this case, we deform the commutation (5). Thus, the fundamental algebra
is defined by the spatial coordinates xi and the momentum pi satisfying

Proposition 1.

[xi, xj ]χ = iθεij , [pi, pj ]χ = −iθ (µω)2εij , [pi, xj ]χ = −iηδij

[pi, t] = 0 = [xi, t], [pi, ∂t ] = 0 = [xi, ∂t ], (6)

with the second deformation parameter χ is given by

Definition 3.1.

χ = e±iνπ , (7)
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where ± sign indicates the two rotation directions on two-dimensional space.
θ and η are a noncommutative parameters depending on statistical parameter ν as
we will see later and the notation [x, y]q = xy − qyx. Thus, owing to the third
equality in (6) we get

[xi, pj ]χ = (χ−1 − χ )pjxi + iχ−1ηδij .

Then, we introduce an operator ξi acting on the momentum direction in
the phase-space. We assume that ξi satisfies the following commutation relation

Proposition 2.

[ξi, xj ] = 0 ∀i, j. (8)

In this case, we define the annihilation and the creation operators by

Definition 3.2.

b−
i =

√
µω

2

(
xi + i

µω
ξipi

)

b+
i =

√
µω

2

(
xi − i

µω
ξ−1
i pi

)
, (9)

with ξi is defined in terms of statistical parameter ν and an operator Ki which
could be a function of the number operator N .

Definition 3.3.

ξi = eiνπKi , (10)

According to (6) and (7) the noncommutative geometry leads to a deformed
Heisenberg algebra satisfied by the operators (9) and defined by the following
commutation relations

[b−
i , b+

j ]χ = 1
2η

(
ξiχ

−1 + ξ−1
j

)
δij + i

µω

2 θ
(
I + ξiξ

−1
j

)
εij − iξ−1

j

2 Bij ,

[b+
i , b+

j ]χ = 1
2η

(
ξ−1
j − ξ−1

i χ−1
)
δij + i

µω

2 θ
(
I − ξ−1

i ξ−1
j

)
εij − iξ−1

j

2 Bij ,

[b−
i , b−

j ]χ = 1
2η(ξiχ

−1 − ξj )δij + i
µω

2 θ (I − ξiξj )εij + iξj

2 Bij ,

(11)

with I is the identity and Bij = (χ−1 − χ )pjxi .
To be consistent with the Hermiticity of coordinates we suggest that θ and η

are operators satisfying

θ† = χ−1θ, η† = χ−1η
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and we assume that there is some function f : R −→ R such that

f †(ν) = f (ν), f (0) −→ 1

and

lim
ν−→1

1 + χ

f (ν)
= 2.

Then, we give the following expressions

Definition 3.4.

θ = ν(1 + χ )I

η = 1
2

1+χ

f (ν) cos ν2π,

(12)

which are compatible with the commutative phase-space at the extremes concern-
ing the statistical parameter ν; θ = 0 and η = 1 for ν = 0, 1, respectively. We
remark that the algebra (11) is a deformed version of Heisenberg algerbra satisfied
by the operators given in (3). This new algebra describes the anyonic system for
arbitrary statistical parameter ν.

Another important point is that the obtained deformed Heisenberg algerbra
(11) is interpolating between two extremes depending on the statistical parameter
ν. We know that, in three or more dimensions, ν takes the values 0 or 1 and in two
dimensions ν is arbitrary real number. The latter case has already discussed above
and characterizing exotic particles. In the case of three or more dimensions, if ν =
0 we get χ = 1, ξi = ξ−1

i = I , θ = 0, η = 1 and Bij = 0. Thus, the commutation
relations of the algebra (11) becomes

[b−
i , b+

j ] = δij , [b+
i , b+

j ] = 0, [b−
i , b−

j ] = 0. (13)

These relations define the bosonic algebra and this is one extreme. The second
extreme could be gotten if ν = 1, then we have χ = −1, θ = 0, η = 1 and Bij = 0.
We find the following commutation relations

{b−
i , b+

j } = 1
2

(
e−iπKj − eiπKi

)
δij ,

{b+
i , b+

j } = 1
2

(
e−iπKj + e−iπKi

)
δij ,

{b−
i , b−

j } = 1
2

(
eiπKi + eiπKj

)
δij .

(14)

which close a deformed fermionic algebra for arbitrary operator Ki (10) as a
second extreme for the algebra (11). Again if Ki is a hermitian operaor then ξi is
unitary and b+

i is a complex conjugate of b−
i , then the algebra (11) will not have

the fermionic algebra as extreme when ν = 1 but its two extremes are bosonic
algebra and deformed fermionic algebra.
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3.2. Case 2

In this section, let us see what will happen if we don’t deform the
combined commutator of momentum and spatial coordinates. If we keep the
commutation relation (5) plus the other relations of the Eq. (6) the noncommutative
geometry is now defined by the following fundamental algebra

Proposition 3.

[xi, xj ]χ = iθεij , [pi, pj ]χ = −iθ (µω)2εij , [pi, xj ]= − iδij

[pi, t] = 0 = [xi, t], [pi, ∂t ] = 0 = [xi, ∂t ]. (15)

By straightforward calculations we obtain

[xi, pj ]χ = iδij + Cji, [pi, xj ]χ = −iδij + Dji, (16)

where Cji = (1 − χ )pjxi and Dji = (1 − χ )xjpi .
Consequently the exotic particles algebra becomes

[b−
i , b+

j ]χ = 1
2

(
ξi + ξ−1

j

)
δij + i

µω

2 θ
(
I + ξiξ

−1
j

)
εij − i

2

(
ξ−1
j Cji − ξiDji

)
,

[b+
i , b+

j ]χ = 1
2

(
ξ−1
j − ξ−1

i

)
δij + i

µω

2 θ
(
I − ξ−1

i ξ−1
j

)
εij − i

2

(
ξ−1
j Cji + ξ−1

i Dji

)
,

[b−
i , b−

j ]χ = 1
2 (ξi − ξj )δij + i

µω

2 θ (I − ξiξj )εij + i
2 (ξjCji + ξiDji),

(17)
with θ is defined by (12). Again, if ν = 0 we get χ = 1, θ = 0 and Cji = 0 =
Dji and we refind the bosonic algebra (13) as an extreme of the symmetry (17)
describing quasi-particles system. Then the case ν = 1 leads to χ = −1, θ = 0
and Cji �= 0 �= Dji and we find a deformed fermionic algebra which is different
from (14) and defined by

{b−
i , b+

j } = 1
2

(
eiπKi + e−iπKj

)
δij − i

2

(
e−iπKj Cji − eiπKi Dji

)
,

{b+
i , b+

j } = 1
2

(
e−iπKj − e−iπKi

)
δij − i

2

(
e−iπKj Cji + e−iπKi Dji

)
,

{b−
i , b−

j } = 1
2

(
eiπKi − eiπKj

)
δij + i

2

(
eiπKj Cji + eiπKi Dji

)
.

(18)

as a second extreme of (17).
The main result we get from this investigation is that exotic particles algebra

goes to bosonic algebra if ν −→ 0. This means that our system is originally gotten
by exciting a bosonic system in two-dimensional space. Also, we get a deformed
fermionic algebra as a second extreme when the statistical parameter ν equals
to 1. Thus, we remark that the system described by the above algebras (11) or
(17) doesn’t have any thing to do with fermions originally but it could be related
to something else as deformed fermions which are known in the literature as
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quionic particles or ki-fermions, ki , an integer number introduced as deformation
parameter, and these kinds of particles are known as non physical particles.

4. DEFORMED OSCILLATOR ALGEBRAS

In this section, we show that the extended Heisenberg algebra could be a
symmetry of planar system at deformed level. First we start by a short review
on Cλ-extended oscillator algebra and then we give the deformed form of this
symmetry which describes exotic particles in two-dimensional space.

4.1. Extended Heisenberg Algebra

We review in brief the Cλ-extended oscillator algebras. As known in the
literature, a generalization of the Calogero–Vasiliev algebras, the Cλ-extended
oscillator algebras (also called GDOA’s), denoted Aλ, λ = 2, 3, . . . , are defined
by

[N, a†] = a†, [a, a†] = I +
λ−1∑
µ=0

αµPµ,

[N,Pµ] = 0, a†Pµ = Pµ+1a
†,

(19)

together with their Hermitian conjugates, and

Pµ = 1

λ

λ−1∑
ν=0

e
2πiν(N−µ)

λ ,

λ−1∑
µ=0

Pµ = 1, PµPν = δµ,νPν

λ−1∑
µ=0

αµ = 0,

µ−1∑
ν=0

αν > −1, µ = 1, . . . , λ − 1. (20)

where αµ ∈ R, N is the number operator and Pµ are the projection operators on
subspaces Fµ = {|kλ − µ〉|k = 0, 1, 2, . . .} of the Fock space F which is portion-
ing into λ subspaces.

The operators a and a† are defined by

a†a = F (N ), aa† = F (N + 1), (21)

where F (N ) = N +
λ−1∑
µ=0

βµPµ, βµ =
µ−1∑
ν=0

αν , which is a fundamental concept of

deformed oscillators. Let’s denote the basis states of subspaces Fµ by |n〉 =
|kλ + µ〉 � (a†)n|0〉 where a|0〉 = 0, |0〉 is the vacuum state. The operators a, a†

and N act on Fµ as follows

N |n〉 = n|n〉, a†|n〉 = √
F (N + 1)|n + 1〉, a|n〉 = √

F (N )|n − 1〉. (22)
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According to these relations, a and a† are the annihilation and the creation opera-
tors, respectively.

Particularly, if λ = 2, we have two projection operators P0 = 1
2 (I + (−1)N )

and P1 = 1
2 (I − (−1)N ) on the even and odd subspaces of the Fock space F , and

the relations of (1) are restricted to

[N, a†] = a†, [a, a†] = I + κK, {K, a†} = 0, (23)

with their Hermitian conjugates, where K = (−1)N is the Klein operator and κ is
a real parameter. These relations define the so-called Calogero–Vasiliev algebra.

The Cλ-extended oscillator algebras are seeing as deformation of G-extended
oscillator algebras, where G is some finite group, appeared in connection with
n-particle integrable models. In the former case, G is the symmetric group Sn.
So, for two particles S2, can be realized in terms of K and S2-extended oscillator
algebra becomes a generalized deformed oscillator algebra (GDOA) also known as
the Calogero–Vasiliev or modified oscillator algebra. In the Cλ-extended oscillator
algebras, G ≡ Cλ is the cyclic group of order λ, Cλ = {1,K, . . . , Kλ−1}. So,
these algebras have a rich structure since they depend upon λ independent real
parameters, α0, α1, . . . , αλ−1.

4.2. Deformed Cλ-Extended Heisenberg Algebra

Other version of anyonic algebra can be obtained by treating the special
case of statistical parameter ν ∈ [0, 1]. By using, the Taylor expansion to the
operator ξi , the first commutation relation in the algebra (17) can be rewritten in
this form

[b−
i , b+

j ]χ = (
I + 
[ν]

ij

)
δij + A

[ν]
ij εij + Q

[ν]
ij , (24)

where


[ν]
ij =

n+1
2∑

�=1

κν,�

K2�−1
i − K2�−1

j

2
+

m
2∑

k=1

κν,k

K2k
i + K2k

j

2
,

Q
[ν]
ij = − i

2

λ−1∑
p=0

(iνπ )p

p!

(
(−Kj )pCji − K

p

i Dji

)
(25)

and

A
[ν]
ij = iθµw

2

(
I +

λ−1∑
α=0

(iνπ )α

α!
(Ki − Kj )α

)
, (26)

with m ∈ N even and n ∈ N odd such that n,m ≤ λ − 1 with λ ∈ N by imposing

Kλ
i = I.



902 Douari

The coeffecients κν,� and κν,k are given in terms of statistical parameter as follows

κν,� = (iνπ )2�−1

(2� − 1)!
, κν,k = (iνπ )2k

(2k)!
.

Then, the last two commutation relations of (17) become

[b+
i , b+

j ]χ =
λ−1∑
α=1

(−iνπ )α

α!

Kα
j − Kα

i

2
δij − i

µω

2
θ

λ−1∑
α=1

(−iνπ )α

α!
(Ki + Kj )αεij

− i

2

λ−1∑
p=0

(−iνπ )p

p!

(
K

p

j Cji − K
p

i Dji

)
,

[b−
i , b−

j ]χ =
λ−1∑
α=1

(iνπ )α

α!

Kα
i − Kα

j

2
δij − i

µω

2
θ

λ−1∑
α=1

(iνπ )α

α!
(Ki + Kj )αεij

+ i

2

λ−1∑
p=0

(iνπ )p

p!

(
K

p

j Cji − K
p

i Dji

)
. (27)

Now if we pose the following
Proposition 4

Ki = ei 2π
λ

Ni

with Ni is a number operator defined in terms of b+
i and b−

i as

b+
i b−

i = f (N ), (28)

with f is some function such that the following relations are satisfied

[Ni, b
−
j ] = −δij bi, [Ni, b

+
j ] = δij b

†
i ,

Kibj = δij e
−i 2π

λ bjKi, Kib
†
j = δij e

i 2π
λ b

†
jKi.

Thus, It is easy to see that the obtained relations (24) and (27) define a
physicswise realization of deformed Cλ-extended Heisenberg algebra on two-
dimensional noncommutative space describing exotic particles, where Cλ is a
cyclic group

Cλ = {
I,Ki,K

2
i , K3

i , ..., Kλ−1
i

}
, λ ∈ N.

Again once, it is clear that the obtained algebra goes to bosonic symmetry if ν

goes to 0.
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4.3. Fock Representation

It is convenient to construct a Fock representation for the algebra (15)
underlying the noncommutative geometry by way of the operators (9) obeying
(24) and (27). The Fock space is introduced by the set

Fi = {| n〉; n = 0, 1} (29)

with the states | n〉 are defined as

| n〉 = 1

f (
√

n!)
(b+

i )n | 0〉, n = 0, 1 (30)

they are the quantum mechanical states inherent to the noncommutativity (15),
with | 0〉 the vacuum state and f is some function defining the number operator
Ni as given above in (28). The “exotic” annihilation and creation operators act on
Fock space as

b+
i | n〉 = f (

√
n + 1) | n + 1〉,

b−
i | n〉 = f (

√
n) | n − 1〉. (31)

Then, Owing to (9,31), the noncommuting spatial and momentum coordinates are
acting on Fock space as

xi | n〉 = 1√
2µw

[
f (

√
n) | n − 1〉 + f (

√
n + 1) | n + 1〉

]
,

pi | n〉 = i
√

2µw

ei 2π
λ

n − e−i 2π
λ

n

[
− f (

√
n) | n − 1〉 + f (

√
n + 1) | n + 1〉

]
, (32)

5. CONCLUSION

We want to mention in conclusion that one of the important results we got
studying the noncommutative geometry of two-dimensional space is the crucial
role of statistical parameter ν. In this investigation, we deformed the fundamen-
tal algebra describing the noncommutative geometry to find out the symmetry
describes exotic particles living in two-dimensional space. The study leaded to
an algebra interpolating between bosonic and deformed fermionic algebras. This
means that our system is originally gotten by exciting a bosonic system in two-
dimensional space and since the second extreme is a deformed fermionic algebra,
the exotic particles system doesn’t have anything to do with fermions originally
when the statistical parameter ν goes to 1 but it could be related to something
else as deformed fermions which are known in the literature as quionic parti-
cles or ki-fermions, ki integer number introduced as deformation parameter, and
these kinds of particles are not physical particles. Then we looked for other face
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of exotic particles algebra characterized by small statistical parameters. We ob-
tained a deformed Cλ-Extended Heisenberg Algebra describing quasi-particles.
This result is a realization, in physics-wise, of a deformed version of Cλ-Extended
Heisenberg Algebra (Ohnuki and Kamefuchi, 1982; Macfarlane, 1982, 1994a,b;
Junussis, 1982; Biedenhrn, 1989; Quesne and Vansteenkiste, 1995, 1996) in two-
dimensional noncommutative space.
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